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Trajectory Optimization for Legged Robots with
Slipping Motions

Jan Carius1, René Ranftl2, Vladlen Koltun2, and Marco Hutter1

Abstract—The dynamics of legged systems are characterized
by under-actuation, instability, and contact state switching. We
present a trajectory optimization method for generating physi-
cally consistent motions under these conditions. By integrating
a custom solver for hard contact forces in the system dynamics
model, the optimal control algorithm has the authority to freely
transition between open, closed, and sliding contact states along
the trajectory. Our method can discover stepping motions without
a predefined contact schedule. Moreover, the optimizer makes
use of slipping contacts if a no-slip condition is too restrictive for
the task at hand. Additionally, we show that new behaviors like
skating over slippery surfaces emerge automatically, which would
not be possible with classical methods that assume stationary
contact points. Experiments in simulation and on hardware
confirm the physical consistency of the generated trajectories.
Our solver achieves iteration rates of 40 Hz for a 1 s horizon and
is therefore fast enough to run in a receding horizon setting.

Index Terms—Motion and Path Planning, Legged Robots,
Optimization and Optimal Control

I. INTRODUCTION

LEGGED robots need to skillfully manipulate ground
contact forces to propel themselves and retain stability.

This article reports on our optimization approach for general
articulated robots subject to contact interactions. By encapsulat-
ing a contact solving routine for hard unilateral contacts in the
system dynamics, our motion planner can holistically optimize
over whole-body motions and reason about contact sequence
and timings simultaneously. Unlike most existing methods, we
can also handle sliding contacts, a behavior that is traditionally
avoided in motion planning algorithms.

Most established methods achieve advanced locomotion
proficiency through a layered approach [1]–[3]. On the highest
level, a navigation module generates a path that guides
the robot’s center to the goal while avoiding obstacles and
impassable terrain. The middle layer is formed by a motion
planner that often employs a simplified model of the robot
dynamics and some stability criteria like the Zero-Moment
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Fig. 1. The quadrupedal robot ANYmal tracking an optimized motion plan on
a slippery surface. Contact forces are actively modulated to transition between
stick and slip phases.

Point [4] or Raibert heuristic [5]. The planner generates
references on the joint or center of mass (COM) level and
decides where each foot is placed on the ground and which
forces shall be applied. To avoid tackling the combinatorial
problem of contact selection, many approaches on this level
assume a fixed contact schedule (e.g., manually pre-specified
gait or given by an external contact planner [6], [7]). On
the lowest level of locomotion control, a controller tracks
the motion plan as close as possible and interacts with the
actuators of the system. Engineered behaviors such as stepping
reflexes and contact recovery are added at this level to improve
robustness.

The community has embraced trajectory optimization (TO)
as its dominant tool for the motion planner because physical
constraints, goal specification, and a notion of quality and
efficiency can be conveniently formalized in a single opti-
mization problem. Unfortunately, the dynamics and constraints
of walking machines lead to a difficult nonconvex optimiza-
tion problem where discrete contact switching reduces the
information content of gradients. Therefore, popular gradient-
based sparse nonlinear program (NLP) solvers or differential
dynamic programming (DDP) methods have difficulties when
being initialized far from the optimal solution. Decoupling
the problem into separate components alleviates some of the
problems but may lead to infeasible motion plans or overly
conservative behavior. On the other hand, solving the entire
locomotion problem at once, i.e., a monolithic algorithm
that computes physically correct joint references from a goal
specification, is computationally very challenging [3], [8]–[11]
and typically requires simplifying assumptions to produce
solutions at interactive rates.

With this work, we present a solution to the motion planning
problem that translates local goal specifications into feasible
motion plans that capitalize on the full range of contact states.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

While classically only a binary decision between open and
closed contacts is made, we also allow for sliding contacts. Our
objective is to design an accurate and efficient planner whose
trajectories can be directly tracked without additional logic
on the controller side. We show how a DDP-like planner can
operate on a physically realistic model and generate consistent
motions without a predefined contact (state) sequence while
remaining computationally competitive. The use of a realistic
contact model allows us to drop the no-slip assumption and
thereby generate novel behaviors like walking with slipping
contacts.

A. Related work
Many works in the legged motion planning domain focus

on designing simplifications and proxy constraints to reduce
the computational complexity and nonlinearity of the optimal
control (OC) problem. Handling the full whole-body dynamics
is often believed to be intractable without model reduction. A
recent article [3] presents a state-of-the-art implementation of
the layered approach introduced above and proposes numerous
proxy constraints that appear well-behaved with the multiple
shooting method and even generalize to non-flat ground.

Usage of centroidal dynamics is the most popular modeling
choice in the literature [3], [10]–[12]. These methods allow
planning over contact forces, contact locations, and COM
motion in cartesian space. Since the effect of all forces
is projected onto the COM frame, it is not clear yet how
to allow active manipulation of internal angular momentum
efficiently [13]. In contrast, we showcase an instance of TO
with full dynamics in joint space, which allows us to precisely
specify torque and velocity constraints of our actuators and
generate motions that make use of the full dynamics of the
system. While this induces a more complex optimization
landscape, we show that we can still find motions at interactive
solver rates.

Continuous OC problems for high-dimensional robotic
systems are most commonly solved by direct methods. A
transcription technique is thus required that turns the variational
problem into a finite-dimensional mathematical program. Vari-
ants of DDP methods have proven to be a competitive option
for transcription and were shown fast enough for receding
horizon control [8], [12]–[14]. In this context, the required
speed and convergence properties are frequently achieved by
smoothing of physics constraints, soft contact models, or fixed
gait specifications. Due to space constraints, we focus on
the family of DDP methods in this review, although other
options like direct collocation [9], [11], [15] or mixed integer
programming [10], [16], [17] are also active fields of research.

Recently, we showed that contact-implicit optimization [18]
can be achieved by solving hard contact constraints at the
dynamics level through the inclusion of a time-stepping
integration scheme. The encapsulating iterative linear-quadratic
regulator (iLQR) [19] optimization procedure is able to discover
hopping and walking motions for a single leg. In the present
work, we extend this method and demonstrate that it scales to
larger and more complex systems like a quadrupedal robot and
thereby even finds previously unseen behaviors like contact
sliding.

The motion optimization approach by Neunert et al. [14],
[20] also eliminates the need for contact constraints by
absorbing their effects into the state propagation law. With
well-tuned cost function and contact parameters, their optimizer
can discover feasible walking motions similar to our method.
Our work can be seen as a generalization that replaces the
soft contact model with a physically accurate contact solver
that respects Coulomb’s friction law by design. This results
in much crisper contact interactions instead of “mud treading”
motions and richer behavior depending on the configurable
restitution and friction parameters.

B. Contributions

This work presents a complete pipeline of optimization-based
motion planning for legged robots. We show how the full-body
dynamics of a quadruped can be efficiently optimized under
unilateral constraints with Coulomb friction, possible stick-slip
transitions, and automatically emerging contact mode schedule.
This article specifically reports the following results which we
empirically validate on the quadrupedal robot ANYmal [21]
(Fig. 1):

1) Our contact-implicit system model enables a single
shooting method to discover diverse movement patterns
of an underactuated and unstable walking robot.

2) Generated motions exploit sliding contacts and stick-slip
transitions for both locomotion on slippery surfaces and
to extend the degrees of freedom (DOFs) of the system,
if necessary. To the best of our knowledge, this is the first
instance of a motion planner that purposefully utilizes
such contact interactions to create feasible walking
trajectories.

3) The generated trajectories are physically accurate such
that more than a dozen footsteps can be stably tracked
without replanning.

4) The iterations of our solver are fast enough to be
considered for use in a receding horizon implementation.
We report on the disturbance rejection performance of
our through-contact optimization scheme in a model
predictive control (MPC) setting.

II. METHOD

Our strategy to generate motions for walking robots is to
formulate and solve a suitable OC problem. In the following, we
first describe how we model the state evolution of our system.
Our state map comprises both the rigid body dynamics of the
robot as well as the effects of contact constraints. Afterwards,
the OC problem is formulated based on the system dynamics
and subsequently solved.

A. Rigid body dynamics with unilateral constraints and friction

We model our system as an articulated rigid body sub-
ject to actuation torques (inputs u) and Nc external forces
f ext = [f>1 · · ·f

>
Nc

]> ∈ R3Nc from the environment which
arise from interactions with the ground. The contacts between
the robot’s feet and the ground plane are modeled as hard
unilateral constraints with Coulomb friction and zero restitution.
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Fig. 2. Comparison of contact models as a function of penetration at zero
velocity. The soft contact [14] is not aware of the inertia at the foot; hence
contact penetration becomes a function of the load. Drift compensation
aggressively increases the repulsion force as penetration occurs but does not
affect restitution behavior. Without penetration, the drift and no-drift models
coincide. The “perfect” contact force is given as a reference and corresponds
to the quasi-static forces required for compensating gravity. Penetration should
never occur in the perfect case (dashed line).

Algorithm 1 State integration by time-stepping
Input: Initial state x0 and zero-order hold control input u
Forward-Euler half step for joint positions and base pose:
- xm ← x0 + forwardEulerPositionUpdate(x0,∆t/2)
Calculate quantities for contact solver:
- d← calculateFeetToGroundDistances(xm)
- Jc ← stackedFootJacobians(xm)
- G← Jc massMatrix−1(xm) Jc

>

- G̃← G + complementarityCorrection(d)
- c← collectEomTerms(xm,∆t)
- c̃← c + driftCompensation(d,∆t)
Solve for contact forces:
f ext ← solveQuadraticProgram(G̃, c̃)
Velocity and position update step:
- xe ← x0 + forwardEulerVelocityUpdate(x0, f

ext,∆t)
- xe ← trapezoidalPositionUpdate(x0,xe,∆t)
Output: State xe after time step

The system’s state x ∈ SE(3)× R6+2Nj comprises the robot’s
position, orientation, and twist as well as the position and
velocity of all Nj joints. We use exponential map parameters to
represent 3D orientation because it has a minimal representation
and no singularities in the range of motion that we are interested
in. Both x[n] and u[n] are functions of the time step n.

Alg. 1 summarizes the key elements to obtain the discrete-
time state propagation law x[n+ 1] = f(x[n],u[n]) by a
time-stepping scheme [18]. The generalized positions are first
updated by a forward-Euler step over half the time interval.
Then we calculate the contact forces by solving a quadratic
program with second-order cone constraints:

minimize
{f ext∈F}

1

2
f ext>Gf ext + f ext>c . (1)

The positive-definite Delassus matrix G ∈ R3Nc×3Nc corre-
sponds to the inverse inertia felt at the contact points. The
vector c ∈ R3Nc collects other equations of motion (EOM)
terms such that the optimization (1) finds the minimal feasible
contact forces that reduce the contact point velocities to zero
in the next time step (principle of least action). The feasible
set F models Coulomb friction of the unilateral contacts. Once
the contact forces are obtained, the velocities at the end of
the integration interval are calculated by a forward-Euler step
using the generalized accelerations (i.e., forward dynamics).
Last, the final generalized positions are given by the implicit
trapezoidal integration rule on the velocities.

Thus far, we have ignored the fact that forces only act when
the separation between a point on the robot and the environment
is zero. In our previous work, we selectively added only those
contact forces f i to the stacked vector f ext whose separation
distance di was nonpositive. In the present work, we consider
contacts to be always active. This modification avoids changing
the dimensions of the optimization problem (1) and ensures
the forces remain a continuous function of the state. In order
to still comply with the complementarity condition between
reaction force and separation distance di, we compel the normal
component of the reaction force to zero by adding a large
exponential term on the corresponding diagonal entry of the
G matrix [22]

Ĝii = Gii + exp (c1 tanh (c2 di))/c3 . (2)

The coefficients c1 = 8, c2 = 20, c3 = 10 are chosen such that
all relevant effects like restitution and friction are still captured
while contact forces are reduced very quickly with increasing
distance. In particular, it ensures that the contacts appear very
crisp, surpassing a soft contact model.

A further extension to [18] is the addition of drift stabilization
according to the modified Θ-method [23] to prevent the feet
from sinking into the ground during a stance phase. Drift into
the constraint surface is possible because our time-stepping
method enforces the unilateral constraint only on the velocity
level. Constraint satisfaction on position level is recovered
by adding a compensation term di/∆t to the row of c
that corresponds to the violating contact i. The additional
contribution acts like a predictive element that induces a force
that pushes the contact point out of the constraint. We find that
this seemingly small modification helps the solver to find a
better motion because contact opening is more straightforward
to discover when the feet stay on the contact surface. The
behavior of our hard contact model is compared to alternative
formulations in Fig. 2.

In the following optimization, the partial derivatives of the
state map ∂f

∂x ,
∂f
∂u will be required. We obtain these state

and input dependent Jacobian matrices through automatic
differentiation (AD). The evaluation of the function f is
recorded in a tape of operations that reproduces Alg. 1 including
all underlying rigid body dynamics algorithms, the contact
solving loop, and the time-stepping integration scheme. As
a consequence, the partial derivatives of this routine can
accumulate enormous length on the order of 100’000 generated
lines of code. While this is not a problem for the AD suite
(CppAD), the compilation of this code can become problematic.
We reduce the complexity of evaluating the derivative by
omitting the drift compensation from the tape. Furthermore, we
eliminate unnecessary operations by exploiting the symmetry
of inertia tensors.
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B. The optimal control problem

We consider a discrete, finite horizon optimal control
problem of the form

minimize
u[·]

J = Φ(x[nf ]) +

nf−1∑
n=0

l(x[n],u[n], n) , (3)

subject to


x[n+ 1] = f(x[n],u[n]) ,

x[0] = x0 ,
S x[i] ≤ vjointLimits ∀i ,

||u[i]||∞ ≤ umax ∀i ,

(4)

where nf is the number of time steps and x0 a given initial
state. We use quadratic final costs of the form

Φ(x) = (x− xref,f )>Rf (x− xref,f ) , (5)

and running costs of the form

l(x,u, n) = (x− xnom)>Q(x− xnom) + u>Ru

+ a[n](x− xref[n])>Qa(x− xref[n]) . (6)

The scalar a[n] is a time-dependent cost activation switch that
we use to encourage time-encoded behaviors like periodic
walking. The nominal configuration xnom acts as a regularizer
while reference configurations xref encode specific goals such
as moving individual limbs or the robot’s torso. Our dynamics
f already include the effects of contact forces, so no further
contact constraints are required in (4). Additional constraints,
e.g., to enforce joint limits, can be added to the OC problem
through an appropriate selection matrix S, although we find
that the existence of regularization costs makes them needless.

Our solution strategy is closely related to the well-known
iLQR and can be seen as a direct single shooting approach. In
each iteration of the algorithm, we roll out the current control
trajectory u[·] under the nominal dynamics f , resulting in
the nominal state trajectory x[·]. Subsequently, a local linear
approximation of the dynamics and a quadratic approximation
of the cost are calculated by automatic differentiation. The
resulting linear-quadratic optimal control (LQOC) problem is
then passed to the HPIPM solver [24] to obtain nominal state
and control updates for the next iteration together with a linear
feedback law. Finally, we perform a backtracking line search
on the update size to ensure decreasing costs.

The advantage of using a shooting method with our model
f is that all motions are guaranteed to remain feasible
and the optimizer is relieved from handling the intricate
complementarity constraints that arise from contact interactions.
Furthermore, the optimizer can reason about all modeled
behaviors such as stick-slip transitions and making or breaking
contact at any time.

To enforce input limits umax we obtain similar results by
either enforcing the constraints on the solver level or re-
parameterizing the input through a sigmoid transform

ûi = umax tanh

(
2ui

umax

)
, (7)

where only the transformed input û is applied to the actual
dynamics. In practice, we use the transform method to gain
a small speed-up in the solver. Additional state or state-input
constraints can also be passed to the HPIPM solver.

C. Application on a robot

Solving the OC problem (3), (4) results in discretized state
and control trajectories. To track the motion plan on the
robot, we linearly interpolate these trajectories at the required
control frequency to obtain the planned state and input at
the current time. The tracking controller then applies the
optimized torques to achieve the planned accelerations and
contact forces and closes a PD feedback loop on joint positions
and velocities. Relatively stiff joint tracking gains are necessary
to control motion plans with slipping contacts such that stick-
slip transitions are followed even if the encountered friction is
higher or lower than initially planned for.

While more sophisticated control architectures are available,
e.g., hierarchical optimization-based whole-body control, such
controllers usually require specifying which leg can be used
as support and which is in swing phase. Our contact-invariant
motion plans do not make a clear distinction between these
phases and may additionally include sliding contacts. The
trajectories we produce are accurate enough such that no
advanced stabilizing action from the controller is required.
Therefore, we apply the described simple tracking controller
and show that it is sufficient for realizing the trajectories on
hardware.

III. RESULTS

We present quantitative and qualitative results on the
performance of our algorithm. Moreover, we demonstrate the
validity of the resulting motion plans through experiments in a
physics simulation environment (Gazebo with Open Dynamics
Engine (ODE)) and on real hardware.

A. Test setup

We evaluate our algorithm on the quadrupedal robot ANY-
mal [21] shown in Fig. 1. It has Nj = 12 torque-controlled
joints and Nc = 4 point-feet on which contact forces are acting.
For motions on regular ground, we set a friction coefficient
of 0.7 in the contact solver. The dynamics model parameters1

have to be tuned only once for a given system and environment.
We choose a time step of ∆t = 0.01 s. The regularization cost
terms can be kept constant across all experiments. For task-
specific costs, our procedure is to gradually increase their
weights until the desired behavior can be observed. All motion
plan optimizations are initialized with a trivial standing position
at nominal joint angles.

B. Discovery of walking motion and gait sequence

Contrary to switched dynamic models, our optimizer has
the authority to manipulate the contact state at each time step
because we model the system dynamics including the effects
of contact constraints. In this subsection, we thus evaluate
our algorithm’s ability to exploit these additional DOFs and
automatically discover a valid walking motion with multiple
steps. In our initial experiments, we nudge the optimizer
towards a specific contact sequence via modifications to the cost

1Contact properties, contact solver iteration settings, timestep
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Fig. 3. Visualization of the foot (Left Front to Right Hind) positions from
an optimized trajectory with hinted gait (dashed) and automatically emerging
gait (solid, same colors). The motion without specified footfall pattern is less
smooth and exhibits foot scuffing in the second half.

function. In the second set of experiments, the cost function
only encodes that it is desirable to move forward, but no
information about a favored leg motion is provided.

1) Motion plans with hinted gait: We first assess how
the proposed optimization method performs with an unstable
and underactuated system under switching contact modes. To
encourage a multi-step motion, we encode a periodic trotting
gait in the time-dependent portion of the running cost (6)
by alternatingly setting the reference for two diagonal legs
to a bent configuration. Such encoding of the gait was also
previously used in [14].

With these cost modifications in place, we optimize trajec-
tories of various lengths and both with and without forward
motion. The resulting motions feature a smooth and visually
appealing trotting gait as can be seen from the foot trajectories
plotted in Fig. 3 and in the accompanying video2. The
convergence behavior in Fig. 4 shows that a large number
of iterations is initially required to discover that contacts can
be opened. In this phase, the optimizer attempts to gradually
unload the legs that are requested to be lifted and eventually
discovers that contacts can be broken. Once the contact
sequence is determined, the cost decreases rapidly. That means,
if the initialization had been a stepping motion, the algorithm
would have converged much faster. However, finding such a
stable input sequence for the initialization is difficult in practice,
and we evaluate our algorithm on its ability to find a walking
motion from scratch.

2) Motion plans with emerging gait: Having verified that our
algorithm can optimize across contact events, we now show that
a feasible stepping motion can be discovered without any hints
that the feet can or should be lifted. We optimize a trajectory of
2 s length (similar duration to the 4-step sequence with hinted
gait) where we encourage a 0.5 m forward displacement of
the base3 but do not use any time-dependent costs that would
induce a periodic gait.

We find that the balance between forward pushing costs and
regularization terms is the dominating factor that influences the
result of the optimization. Too little weight on the displacement
cost makes the robot merely lean forward as far as the support

2https://youtu.be/Sd6lqoj9Tvs
3Without a cost component that encourages forward motion, the algorithm

converges to a stable standing position close to the initialization. Stepping in
place cannot be achieved because it would always be suboptimal to lift a foot.

Fig. 4. Progression of the iterative optimization algorithm. All costs are
normalized by their initial value for comparability. The free gait motion has a
similar duration as the fixed gait motion with four steps. The sharp descent for
motions with hinted gait happens when the algorithm discovers that contacts
can be broken.

polygon permits, but it does not discover a step. Overly strong
terms can cause aggressive forward leaps that will not be robust
in reality and bring the solver into an area of the state space
that is difficult to navigate while keeping stability in successive
updates. Our trials showed that the ratio between regularization
costs and goal-directed costs should be approximately 1:1 in the
initialization. In that case, a moderate forward motion emerges
that partially resembles a trotting gait. The corresponding
trajectories are plotted in Figs. 3 and 4, and a visualization is
shown in the video. As we expect, the footfall pattern is not as
clean as with a hinted gait, and the movement appears more
impulsive. Still, the entire trajectory is within the physical
constraints of our model, and the robot achieves to move
forward without any human-designed gait specification. The
solver converges to a trajectory that reaches the desired base
position within 3% relative error.

The hardest challenge in achieving sensible motions without
a constrained gait pattern is posed by the trade-off between
local minima and scuffing feet. Our dynamics model only
considers flat ground, so there is little reason for high ground
clearance in a walking motion. The optimizer will, therefore,
converge to trajectories that barely lift the feet, which is less
robust in real-world scenarios. We establish that the drift
compensation (Sect. II-A) facilitates proper contact opening
significantly, whereas introducing additional nonlinearities in
the cost function did not help reliably. The trajectories that we
can currently produce exhibit foot scuffing to some degree but,
as we will show later, this does not hinder hardware transfer
and therefore confirms that the optimizer is operating within
the physical limits of the contact behavior.

C. Motions with slippage

Given a variety of cost functions, the proposed algorithm
can discover qualitatively different behaviors that exploit the
contact model in multiple ways. For example, if we want the
robot to turn in place and torques are very cheap, the resulting
motion will be a jump that brings the robot fast and very
effectively to the required yaw angle. As we increase the cost
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Fig. 5. Different cost weightings on yaw error result in qualitatively different
emerging behaviors for 90◦ in-place rotations. A strong orientation penalty
justifies larger cost expenditure for inputs and leads to a single jump instead
of an energy-saving stepping motion.

of torques, the algorithm converges to a stepping motion that
is less aggressive but drags the feet along the ground. Fig. 5
displays the corresponding plots.

In this section, we focus on our solver’s ability to produce
motions that explicitly make use of slipping contacts. Such
movements would not be possible with TO algorithms that
assume a no-slip condition for closed contacts.

1) Enabling motions that require slippage: We first consider
a scenario where slippage is required to achieve a given task. To
this end, we lock the hip abduction adduction (HAA) joints of
our quadruped and impose costs to make the robot move along
a circular arc (i.e., diagonally forward and simultaneously yaw
with the torso). This task can only be achieved when one or
more feet slip along the ground, similar to the turning motion
of a skid-steer vehicle. Hence, only the active use of sliding
contacts allow the system to regain the lost DOFs that are
necessary to reach the goal.

Our algorithm can solve this task by selectively unloading
feet that are supposed to move along the floor and pushing
them across the stiction limit. Specific knowledge and authority
over the Coulomb friction behavior allow the optimizer to find
contact force distributions that make partially unloaded feet
slide laterally on the ground while keeping the main body
balanced. Inspired by the circular arc that is described by the
robot’s center during this trajectory, we find that tracking this
motion plan repeatedly (i.e., looping the trajectory) results in
walking a full circle. Fig. 6 shows how the robot progresses
by repeatedly following the same motion reference.

2) Walking on slippery ground: Another interesting appli-
cation for sliding contacts is walking on surfaces with a low
friction coefficient. We create such a condition by placing our
quadruped on a wet whiteboard. We determine the friction
coefficient between the feet of our quadruped and the slippery
whiteboard to be approximately µ = 0.3 and assign this value
to the corresponding contact model parameter.

Optimizing a motion with such low friction and without gait
specification yields a “skating” behavior where alternatingly
the loaded legs push the unloaded ones across the ground. We

StartEnd 1 2 ...

Fig. 6. Slippage enables curve walking even when the hip abduction DOFs
are locked. The motion plan only spans two seconds, but repeated execution
results in tracing out an entire circle.

Fig. 7. Integrated deviation between COM and center of pressure (COP) along
a trajectory with forward displacement for different friction coefficients. A
larger deviation implies more aggressive accelerations. As friction decreases,
the COP remains more closely below the COM.

observe that, compared to regular ground, a higher penalty on
joint velocity is required to avoid oscillations in the torque
trajectories due to frequent stick-slip transitions.

We find that confronting our algorithm with a low friction
scenario allows it to embrace sliding as the preferred means
of locomotion. This strategy has the potential to increase
robustness because the feet are always kept close to the ground
and can catch an unexpected slip of a support leg much quicker.
We show in Fig. 7 that the planner distributes the contact forces
more evenly as the friction coefficient decreases. This trend
agrees with the natural behavior of humans to center their COM
over the supporting limbs as the floor becomes slippery [25].

D. Physical accuracy of motion plans: hardware transfer
We apply the generated motions without further refinement

on the physical system and use the simple tracking controller
explained in Sec. II-C. The control frequency on our system
is 400 Hz. No corrective behavior for early or late contact
switching is in place. The fact that we can execute various
motion plans on the hardware without replanning, in particular,
the 14-step trotting sequence, confirms qualitatively that the
generated trajectories are physically consistent.

For a more objective assessment, we compare the trajec-
tories with hinted gait (4 steps, Sec. III-B1), emerging gait
(Sec. III-B2), turning with reduced DOFs (Sec. III-C1), and
skating on slippery surfaces (Sec. III-C2), each in simulation
and when executed on hardware.
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Fig. 8. Summary statistics of absolute joint tracking errors across all joints
and for the entire trajectory. We show box plots for both motions with hinted
and emerging gait as well as for trajectories that include slippage. Tracking
performance is better in simulation (sim) than on real hardware. Slipping
motions are harder to track on average, and there are more severe outliers.

TABLE I
TASK-SPECIFIC ERROR BETWEEN PLANNED AND EXECUTED MOTION

Relative Hinted gait Emerging Slippery skate Locked HAA
error gait turn

Sim 4.82% 20.4% 15.5% 4.23%
Real 8.43% 38.0% 36.6% 34.8%

We first assess tracking performance at the joint level. Fig. 8
shows that the difficult motions have a mean angular error
of up to 0.06 rad while the easier ones stay well below that.
A general trend is that motions with more slippage lead to
a more substantial mean tracking error as well as to more
severe outliers. Errors are accumulated when a contact point
unexpectedly starts slipping or, conversely, does not begin to
slip although intended.

The deviation between plan and execution is consistently
lower in the simulation. This result is expected due to model
mismatch, different friction behavior, additional disturbances,
and imperfect state estimation on the real system. In the case
of skating on slippery ground in simulation, most of the severe
outliers are collected within the initial movement phase because
the robot’s legs slide into a splayed configuration before we
activate our controller. This offset explains why the outliers
appear worse in simulation than on the real system.

Task-specific performance measures are shown in Tab. I.
We compare the experimentally obtained forward displacement
(hinted and emerging gait, slippery skate) or angle turned
(locked HAA turn) with the optimized values. We observe
that the pose of the robot begins to deviate as a result of
unaccounted slippage effects, in particular on hardware. We
conjecture that Coulomb’s friction model proves too simplistic
as the motion plan increasingly exploits sliding contacts.

Finally, we assess the accuracy of our motion plan in terms
of the predicted contact forces. To this end, we attach a force
sensor to the right front foot of our quadruped and plot its
readings in Fig. 9 against the nominal plan. We conclude that
the contact solver calculates ground reaction forces that closely

Fig. 9. Contact force tracking on hardware for a single foot during the 14-step
forward motion. The plot compares planned with measured force magnitude
and shows the foot position underneath to indicate contact phases.

match reality. Note that the spikes on touchdown are expected
to be higher for the force sensor because the time stepping
algorithm computes an average force over the integration step
and cannot resolve such short impulses.

E. Replanning with receding horizon
Our motion planning algorithm is executed on a standard

desktop computer with an Intel i7-8700K (3.7 GHz) CPU.
By retaining the structure of the OC problem, we attain a
computational complexity that is linear in the time horizon of
the problem. On our machine, we achieve a solver iteration
frequency of 39.3 Hz (std. dev. 1.29 Hz) for a one-second
horizon. While objective comparisons are difficult due to
different hardware and optimization levels, our method can
be considered on par with the fastest known methods for
computing full-body motions [3, Sec. VI-B].

The speed of our algorithm allows us to run the planner in a
receding horizon mode where we execute one solver iteration
(rollout, backward pass, and line search) per control update.
We find that the drift compensation from Sec. II-A leads to a
higher rate of unstable rollouts because the measured state may
put the robot’s feet into the ground, leading to large repulsion
forces. As the robot’s state is frequently reset, we disable the
drift compensation in MPC mode.

Continuous replanning should lead to improved disturbance
rejection because the planner receives feedback about state
deviations and can react accordingly. We test this conjecture by
imposing a single quadratic objective that penalizes deviations
from the nominal state. Without disturbance, MPC results in
stable standing. Fig. 10 shows the result of applying an external
lateral force to the main body. The force pulls the body to the
left side and causes a deviation from the reference position. In
order to counter the external force, the motion plan requests
stronger contact forces on the left legs. Once the force is
released, the base returns to the desired zero position smoothly
and without overshoot.

Thanks to our through-contact optimization scheme, the con-
troller keeps the system in balance even when the disturbance
is strong enough to make a foot lose contact unexpectedly. We
can qualitatively reproduce the same result on hardware as
shown in the video.
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Fig. 10. Disturbance rejection under MPC in simulation. The top plot shows
the lateral base position when subjected to a sideways force for one second.
Underneath we visualize how the vertical contact force distribution on the
feet shifts to the left to counter the external force and afterwards returns to a
uniform distribution.

IV. CONCLUSION

We presented a motion planning algorithm for legged robots
that can exploit sliding contacts. The physical feasibility of the
generated trajectories was verified through multiple experiments
in a physics simulator and on hardware. We showed that
overcoming the typical no-slip constraints in motion planning
creates emerging forms of locomotion that were not elicited
before by comparable approaches. The additional DOFs gained
by involving slippage in the motion plan makes the proposed
type of motion optimization particularly applicable to walking
robots with a limited number of joints.

Despite our results, the discovery of contact switches remains
the hardest part in contact-implicit motion optimization due to
limited gradient information. Possible remedies may include
continuation approaches or sampling-based methods.

We have shown the potential of our algorithm in an MPC
setting. In the future, we want to also demonstrate walking
motions with continuous replanning, which is currently still
fragile due to contact state mismatches between the real system
and nominal model. For a robust deployment, state estimation
and motion planning may need to interact more closely such
that slipping feet can be anticipated in the estimator and
accurate state updates are fed back to the planner. Our method
is also not restricted to Coulomb’s friction law, the predictive
power of which is known to degrade as slippage occurs. We
expect that online estimates of the contact properties would
allow the MPC to handle the unpredictability of contact better.

One interesting future research direction is the application
of our ideas in the field of dynamic manipulation. Tasks like
reorienting an object in a (robotic) hand are good examples
where sliding contacts are the natural way of interaction that
make manipulation robust against unknown shape and mass
distribution of the manipulated object.
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