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Table 1: Notation
Symbol Dimension Meaning

B Coordinate frame name (always capital calligraphic letters).
The corresponding origin is denoted with B

B Body name or center of frame B
CrAB Position vector from point A to point B represented in C

frame

v̂ Spatial velocity (abstract vector, no coordinate representa-
tion yet)

â Spatial acceleration (abstract vector, no coordinate repre-
sentation yet)

Î Spatial inertia (mapping from spatial velocity to spatial
momentum)

v̂O B 6× 1 Spatial velocity of body B w.r.t. O’s origin as reference
point and coordinates represented in frame O

v̂O
×
B 6× 6 Cross product matrix of above velocity

OI 3× 3 Inertia matrix

OÎ 6× 6 Spatial inertia represented in frame O
× Spatial vector cross product for motion terms or ‘normal’

cross product for 3-dim vectors (clear from context)

×∗ Spatial vector cross product for force terms

M6 Vector space of motion spatial coordinates

F6 Vector space of force spatial coordinates

1 Introduction

Purpose of this document is to provide an overview on spatial velocities, or as
Roy Featherstone says “The Easy Way to do Rigid Body Dynamics.” This tutorial
is largely based on workshop slides2 and the book ‘Rigid Body Dynamics’ [1] by
Featherstone. It might also be helpful to look at the tutorials [2, 3]. In Table 1, we
summarize the notation used throughout this document.

We will frequently use the cross product matrix (skew-symmetric matrix) of a
3 dimensional vector, which is defined as

r× =

 rx
ry
rz

× =

 0 −rz ry
rz 0 −rx
−ry rx 0

 . (1)

2 Spatial vectors

Spatial vectors are objects, represented by a tuple of length six, that represent a
linear and angular quantity such as force and torque, or linear and angular velocity.
All spatial vectors in this document have a hat on top.

2http://royfeatherstone.org/spatial/slides.pdf
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2.1 Spatial velocity and acceleration

A spatial velocity describes the motion of a rigid body as a whole, not the motion of
an individual point of that body. The spatial velocity of a rigid body B is denoted

v̂O B = v̂O
O B =

[
ωx ωy ωz vOx vOy vOz

]>
=

[
Oω

vO
O

]
. (2)

This notation means: It is B’s spatial velocity v̂ w.r.t. the reference point O and
the coordinates are represented according to the frame axes O. In the following,
we drop one of the indices on the left of a spatial vector by assuming the reference
point is always the origin of the reference frame.

In other words, the spatial velocity of a body w.r.t. a reference frame O is
composed of two parts: a) The classical absolute angular velocity of the body and
b) the absolute linear velocity of the body induced at the origin O. For the latter,
imagine the body extends infinitely in space and then write an expression for the
velocity of the point on the body that coincides with O momentarily.

If the absolute linear velocity of a body w.r.t. the stationary frame I is given as
vIB (meaning the reference point on body B is moving with that velocity) and the
absolute angular velocity is ωIB , then the spatial velocity can easily be calculated
with

v̂I B =

[
IωIB

IvIB + IrIB × IωIB

]
, (3)

v̂B B =

[
BωIB

BvIB

]
. (4)

The relative velocity between two bodies is v̂rel = v̂12 = v̂2 − v̂1. To make this
subtraction component-wise, both the reference point and frame must be identical
for all three terms. Two rigidly connected bodies have the same spatial velocity,
i.e., zero relative velocity and zero relative acceleration.

Moving reference frames: If the reference coordinate system O happens to
be moving (i.e., its orientation changes over time and/or the origin has a nonzero
linear velocity), the spatial velocity Ov̂B is still an absolute spatial velocity of the
body w.r.t. a stationary reference frame that momentarily coincides with O. This
means

• The velocity Ov̂O of the moving frame expressed w.r.t. itself is not zero. It
describes the velocity of frame O w.r.t. a stationary frame that momentarily
concides with O.

• The spatial velocity of a body w.r.t. a moving frame is not relative to the
frame’s movement. This is not to be confused with relative spatial velocities
which are a difference between two absolute spatial velocities.

Time derivative: The general differentiation rule for spatial vectors ŝO is[
d

dt
ŝ

]
O

=
d

dt
( ŝO )︸ ︷︷ ︸

componentwise

+ v̂O O︸︷︷︸
vel of

coord. frame

× ŝO . (5)

For force terms (e.g., spatial force), the force cross product (×∗) must be used (see
Sect.2.3). The first term in the formula above accounts for the change of the vector
in a stationary frame while the cross product adds the effect of a moving reference
frame.
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Spatial acceleration Spatial acceleration is the rate of change of spatial velocity,
i.e., how much the spatial velocity vector changes over time.

Oâ =

[
d

dt
v̂

]
O

=

[
ω̇

Ov̇

]
. (6)

Be aware that the linear component is not the acceleration of any point on the body
because we are still considering how the ‘flow’ changes through the point O (which
is not fixed to the body but fixed in space). Spatial acceleration is a true vector.
We can perform calculations like

âB︸︷︷︸
acc. body B

= âA︸︷︷︸
acc. body A

+ âAB︸︷︷︸
acc. of B w.r.t. A

, (7)

and avoid any Coriolis terms! To numerically perform the addition, the reference
frame must be identical for all quantities. Spatial accelerations are also true vectors,
so it holds that ârel = â12 = â2 − â1.

Relative Velocities are of particular interest to describe systems of rigid bodies
(like a robot), where the links are connected via joints. For example, the relative
velocity of two bodies connected by a rotational/translational joint with axis ŝ and
joint rate q̇ is called joint velocity v̂J = ŝJ q̇. This quantity is conveniently expressed
in the parent P or child C frame of the joint because the representations C ŝJ or P ŝJ
are constant. When differentiating this quantity, we get the joint acceleration.

2.2 Spatial force

The spatial force

f̂O = f̂O
O =

[
nOx nOy nOz fx fy fz

]>
=

[
nO
O
Of

]
, (8)

consists of a linear force f acting along a line that passes through O and a couple
n3 representing the total moment about O. Again, we typically drop one of the
prescripts. The total spatial force on a body is the sum of the individual spatial
forces f̂total =

∑
f̂i. The sum can be computed component-wise if all forces are

represented in the same reference frame. Action and reaction forces between two
interacting bodies are f̂action = −f̂reaction, just like Newton’s third law. The power
delivered by a spatial force on a body is f̂ · v̂. The usual definition dot product
works if reference point and frame of both quantities are the same. There is no
inner product defined on M6 or F6, just between them.

2.3 Spatial Cross Products

Spatial cross products are defined such that the differentiation formula (5) looks
like the Euler differentiation rule. The cross product is different for motion and
force spatial vectors:
Motion cross motion

Ov̂ × Om̂ =

[
ω

Ov

]
×

[
m

Om

]
=

[
ω ×m

ω × Om+ Ov ×m

]
. (9)

3German: Freies Moment
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Motion cross force

Ov̂ ×∗ Of̂ =

[
ω

Ov

]
×∗
[
Oτ

f

]
=

[
ω × Oτ + Ov × f

ω × f

]
. (10)

Many properties of the cross product are found in [1].

2.4 Transforms

Transforming a spatial motion vector (velocity, acceleration) to another reference
frame using the transform matrix

BXA =

[
RBA 0

0 RBA

][
I 0

− rA
×
AB I

]
=

[
RBA 0

−RBA rA
×
AB RBA

]
. (11)

With this definition it holds that

m̂B = BXA m̂A . (12)

Our notation writes rotation matrices as RAB which means this rotation matrix
transforms vectors represented in B frame into A frame (passive rotation). The
inverse of the transform is given by

BX−1A = AXB =

[
R>BA 0

rA
×
AB R

>
BA R>BA

]
. (13)

For force vectors, the star version must be used

BX∗A = (BXA)−> , (14)

Bf̂ = BX∗A Af̂ . (15)

The time derivative of the transform is given by

d

dt
BXA = B(v̂A − v̂B)× BXA . (16)

3 Spatial inertia

The rigid body spatial inertia tensor w.r.t. frame O is formed as

OÎ =

[
OIO mOr

×
OC

mOr
×
OC
>

mI

]
, (17)

with

OIO = OIC +m Or
×
OC Or

×
OC
>
, (18)

where C denotes the center of mass of the body and OIC the classical 3× 3 inertia
matrix at the center of mass expressed in the frame O. Typically, the frame O
is rigidly attached to the body such that the representation of the tensor remains
constant.

Two bodies that are rigidly joined together have a new inertia

OÎcombined = OÎ1 + OÎ2 . (19)

There are no Steiner terms appearing and no need to compute the new center of
mass. Both inertias must be w.r.t. the same frame O.
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To change the coordinate frame (i.e., both the reference and the origin), the formula
is

AÎ = BX>A BÎ
BXA . (20)

The time derivative of the spatial inertia of a body B represented in a body-
attached coordinate frame B is[

d

dt
ÎB

]
B

= Bv̂B ×∗ BÎB − BÎB Bv̂×B (21)

This quantity is in general nonzero because of the motion of frame B.

4 Motion of a single rigid body

The spatial momentum of a body is ĥ = Îv̂. The equation of motion of a single
rigid body B in 3D space can be written in spatial notation w.r.t. a body-fixed
coordinate frame B as

Bf̂ =
d

dt

(
BÎB Bv̂B

)
= BÎB BâB + Bv̂B ×∗ BÎB Bv̂B , (22)

in other words: Net spatial force equals rate of change of spatial momentum.

Example Working out these equations in detail recovers familiar formulas for
the motion of a single body in classical 3D vector notation. We assume that the
body-fixed frame has its origin at the center of mass.

BÎB =

[
BIB 0

0 mI

]
(23)

v̂B B =

[
BωIB

BvB

]
(24)

âB B =

[
Bω̇IB

BaB

]
(25)

Bf̂ =
∑
i

(BX∗i if̂i) + BXI

[
0

m Ig

]
(26)

Now assemble equation of motion (22) with external forces f̂i:

∑
i

(BX∗i if̂i) + BXI

[
0

m Ig

]
=

[
IB Bω̇IB + BωIB × IB BωIB

m BaB + BωIB ×m BvB

]
(27)

This is consistent with [4].

5 Recursive Newton Euler

To calculate the equations of motion (in particular inverse dynamics), one can
employ the recursive Newton Euler algorithm. It consists of two passes along the
robot’s branches: First, velocities and accelerations are propagated from the robot’s
base to the end-effector. Second, the total spatial force necessary for the calculated
acceleration for each body is found via (22) and projected onto the joint axis.
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The procedure is most conveniently implemented when all spatial quantities are
expressed in body-fixed frames.

Gravity is modeled by adding a fictitious acceleration to the root link. Alterna-
tively, one could introduce the gravity force as an external force on all bodies.

There are different ways to model a floating-base robot. Conceptually the easiest
(and typically implemented in libraries like RBDL4) is to define the zeroth body as
the world link and introduce a 6 DoF joint between world link and robot base.

A few remarks on notation and convention:

1. The parent of body i is denoted λ(i)

2. The children of body i are denoted µ(i)

3. Joint i connects between body λ(i) and link i.

4. The joint velocity across a joint is the relative velocity of child w.r.t. parent,
i.e.,

v̂Ji = v̂i − v̂λ(i) . (28)

The same rule applies to joint accelerations.

5. The joint velocity can be expressed as a linear function of a subset of the
generalized velocities pertaining to that joint:

v̂Ji = ŜJiq̇Ji (29)

For single-axis joints, qJi is a scalar and ŜJi a column vector. For a 6 DoF
joint emulating the floating base, Ŝ is typically the identity matrix and qJi
the floating base spatial velocity in base frame.

6. The joint force f̂Ji acts on body i whereas the negative force (reaction force)
is felt by body λ(i).

We summarize the algorithm in the following, which closely resembles [1, Table
5.1], but including the full frame indices:

1. Initialize zeroth link (world or fixed base link) with virtual gravity accelera-
tion. If the z-axis is pointing upwards in frame O, then

Oâg = [ 0 0 0 0 0 g ]> with g = 9.81 m/s2:

0v̂0 = 0̂ (30)

0â0 = −âg (31)

2. For each consecutive link, the velocity and accelerations are calculated by
adding the joint velocity and acceleration, respectively, to the parent’s ones.
A couple of helper quantities are defined to keep the equations simpler.

iv̂Ji = iŜJi q̇Ji (joint velocity) (32)

iâJi = iŜJi q̈Ji +
d

dt

(
iŜJi

)
q̇Ji + iv̂i × iv̂Ji (joint acceleration) (33)

iv̂i = Xi λ(i) λ(i)v̂λ(i) + iv̂Ji (link velocity) (34)

iâi = Xi λ(i) λ(i)âλ(i) + iâJi (link acceleration) (35)

4https://bitbucket.org/rbdl/rbdl
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Figure 1: 2D ball rolling with velocity v without slippage on a plane. The inertial
coordinate frame I is fixed while P and Q translate with the ball’s center. The
body-fixed frame B additionally rotates with the ball.

3. Now that the absolute accelerations are known for each link, one can employ
(22) to calculate the net force that must act on each link to achieve that
acceleration:

if̂
net
i = iÎi iâi + iv̂i ×∗ iÎi iv̂i . (36)

4. The net force is a sum of the external forces acting on the body and all forces
transmitted through joints connected to that body. The force transmitted
through the parent joint must therefore be

if̂Ji = if̂
net
i − Xi ∗

0 0f̂
ext
i +

∑
j∈µ(i)

Xi ∗
j j f̂Jj . (37)

This can be computed recursively for each body from the end-effector inwards.

5. Finally, the torque/force transmitted for each of the joint axes can be com-
puted with

τJi = iŜ
>
Ji if̂Ji . (38)

6 Examples

6.1 Rolling ball on a plane

We consider a planar ball B with radius r that rolls without slippage on flat ground
with velocity v. Figure 1 displays a schematic drawing with the relevant modeling
quantities. We assume that the motion starts in a zero configuration, i.e.,

d = vt , (39)

θ = ωt . (40)
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Some basic quantities are defined in the following:

IrIP = [ 0 vt 0 ]> , (41)

PrPQ = [ 0 0 r ]> , (42)

RQB =

 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (43)

Spatial Transforms The spatial transforms are in general configuration depen-
dent. For this example we have for example

PXI =

[
I 0

−Ir×IP I

]
(44)

Spatial Velocities By inspection, the spatial velocity of the ball with respect to
coordinate system P is

P v̂B =
[
−vr 0 0 0 0 0

]>
, (45)

because the rolling motion leads to instantaneous rotation around point P . On the
other hand, the spatial velocity in frame I additionally has a nonzero component
in the linear z direction because the rolling motion induces an upwards velocity at
the point I, hence

I v̂B =
[
−vr 0 0 0 0 v

r vt
]>

= IXP P v̂B . (46)

With respect to coordinate system Q we get

Qv̂B =
[
−vr 0 0 v 0 0

]>
. (47)

Care must be taken if we consider system B, because the forward velocity at point
B must be projected onto the instantaneous coordinate axes, i.e.,

Bv̂B =



−vr
0

0

RBQ

 0

v

0




=



−vr
0

0

0

v cos θ

v sin θ


. (48)

Spatial acceleration We show how to calculate the spatial acceleration in two
ways

1. Directly differentiate I v̂B (since it is represented in a stationary frame).

I âB =
[

0 0 0 0 0 v2

r

]>
(49)
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2. Use the differentiation rule on P v̂B and then transform it to the I frame for
comparison.

P âB = 0 +



0

0

0

0

v

0


×



−vr
0

0

0

0

0


=



0

0

0

0

0
v2

r


(50)

I âB = IXP P âB =

[
I 0

−Pr×PI I

]
P âB =



0

0

0

0

0
v2

r


(51)

Both methods generate consistent results. Notice that the spatial acceleration of
the rolling sphere is upwards. This is not the acceleration of any point on the body
and may seem rather unintuitive initially.

6.2 Floating base robot with a single link attached

coming soon . . .
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